Machine learning models as tool for detecting suspicious bank operations
https://doi.org/10.35266/2949-3455-2025-3-1
Abstract
Given the digital transformation of the banking system and the expanding availability of financial services, the problem of ensuring the security of banking operations becomes strategically important. The importance of the issue lies in studying the effectiveness of fraud prediction and prevention methods, which are key components of a complete economic security system in the banking sector. Authors focus on the formation of bank card fraud detection models. The research proposes specific recommendations for improving anti-fraud systems in the banking sector using machine learning models. The researchers implemented and tested XGBoost and ANN models in Python to detect fraudulent transactions. The experiments substantiate their high performance and their flexibility and ability to adapt to new data. Using these models enabled banks for quick detection of suspicious operations, which reduces the risk of losses and improves the overall financial system security. Ensuring the secure functioning of the banking transaction system requires a comprehensive approach that includes not only the introduction of modern analytical tools but also continuous training and updating models to identify new methods of fraud. Implementation of the proposed measures will enable credit organizations to improve the effectiveness of fraud protection, reduce financial losses from fraudulent actions and strengthen client confidence.
About the Authors
O. G. ArkadevaRussian Federation
Candidate of Sciences (Economics), Docent
A. V. Petrov
Russian Federation
Internet Marketing Specialist
References
1. Hernandez Aros L., Bustamante Molano L. X., Gutierrez-Portela F. et al. Financial fraud detection through the application of machine learning techniques: A literature review // Humanities and Social Sciences Communications. 2024. Vol. 11. https://doi.org/10.1057/s41599-024-03606-0.
2. Kalyani S., Gupta N. Is artificial intelligence and machine learning changing the ways of banking: A systematic literature review and meta analysis // Discover Artificial Intelligence. 2023. Vol. 3. https://doi.org/10.1007/s44163-023-00094-0.
3. Курносова В. В. Технологии искусственного интеллекта в банкинге // Экономика и менеджмент инновационных технологий. 2022. № 8. URL: https://ekonomika.snauka.ru/2022/08/23330 (дата обращения: 06.02.2025).
4. Трусова А. Ю., Ильина А. И. Методология внедрения машинного обучения в банковской сфере // Вестник Самарского университета. Экономика и управление. 2023. Т. 14, № 4. С. 186–201. https://doi.org/10.18287/2542-0461-2023-14-4-186-201.
5. Шебалков М. П. Современные методы машинного обучения в банковской отрасли // Экономика и управление: проблемы, решения. 2022. Т. 3, № 9. С. 9–14. https://doi.org/10.36871/ek.up.p.r.2022.09.03.002.
6. Виноградов А. С. Использование машинного обучения в финансовом прогнозировании в банках // Актуальные вопросы современной экономики. 2022. № 5.
7. Аркадьева О. Г. Использование методов машинного обучения для отслеживания социальной инженерии в банковских транзакциях // Oeconomia et Jus. 2024. № 4. С. 1–14. https://doi.org/10.47026/2499-9636-2024-4-1-14.
8. Rajani P. K., Khaparde A., Bendre V. et al. Fraud detection and prevention by face recognition with and without mask for banking application // Multimedia Tools and Applications. 2025. Vol. 84. P. 781–804. https://doi.org/10.1007/s11042-024-19021-1.
9. Аркадьева О. Г., Березина Н. В. Формирование модели государственного регулирования развития технологий искусственного интеллекта в финансовом секторе // Oeconomia et Jus. 2023. № 4. С. 12–21. https://doi.org/10.47026/2499-9636-2023-4-12-21.
10. Лихоузов К. И. Применение задач машинного обучения на платформе распределенных вычислений больших данных в банковской сфере // Цифровая трансформация управления: проблемы и решения : материалы V Всерос. науч.-практич. конф., 11 мая 2023 г., г. Москва. М. : Государственный университет управления, 2023. С. 127–129.
11. Gandhar A., Gupta K., Pandey A. K. et al. Fraud detection using machine learning and deep learning // SN Computer Science. 2024. Vol. 5. https://doi.org/10.1007/s42979-024-02772-x.
12. Credit Card Fraud Detection. URL: https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud/data (дата обращения: 06.02.2025).
13. Wang S., Chen B. Credit card attrition: An overview of machine learning and deep learning techniques // Informatics. Economics. Management. 2023. Vol. 2, no. 4. P. 134–144. https://doi.org/10.47813/2782-5280-2023-2-4-0134-0144.
Review
For citations:
Arkadeva O.G., Petrov A.V. Machine learning models as tool for detecting suspicious bank operations. Surgut State University Journal. 2025;13(3):8-21. (In Russ.) https://doi.org/10.35266/2949-3455-2025-3-1